1. Let $f_n: [0,1] \to \mathbb{R}$ be defined by

$$f_n(x) = \begin{cases} nx & 0 \leqslant x \leqslant \frac{1}{n} \\ 1 & \frac{1}{n} \leqslant x \leqslant 1 \end{cases}$$

for $n = 1, 2, \cdots$. Check if the family $\{f_n\}$ is equicontinuous or not.

2. Let \mathcal{F} be a family of equicontinuous functions on [0, 1]. Suppose for every $x \in [0, 1]$, the set $\{f(x) \mid f \in \mathcal{F}\}$ is bounded in \mathbb{C} . Show that \mathcal{F} is bounded in $\mathcal{C}[0, 1]$.

3. Suppose f is a real continuous function on \mathbb{R} . Define $f_n(x) = f(nx)$ for $n = 1, 2, \cdots$. If the family $\{f_n\}$ is equicontinuous on [0, 1], show that f is constant.

4. Show that a monotone function on \mathbb{R} is continuous except possibly at a countable number of points.

5. Suppose $\{f_n\}$ is a sequence of monotonically increasing functions on \mathbb{R} such that $|f_n(x)| < 1$ for all x and all n. Show that there exists a function f and a subsequence $\{n_k\}$ of $\{n\}$ such that

$$f(x) = \lim_{k \to \infty} f_{n_k}(x)$$
, for every $x \in \mathbb{R}$.