Assignment 7

1. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)= \begin{cases}n x & 0 \leqslant x \leqslant \frac{1}{n} \\ 1 & \frac{1}{n} \leqslant x \leqslant 1\end{cases}
$$

for $n=1,2, \cdots$. Check if the family $\left\{f_{n}\right\}$ is equicontinuous or not.
2. Let \mathcal{F} be a family of equicontinuous functions on $[0,1]$. Suppose for every $x \in[0,1]$, the set $\{f(x) \mid f \in \mathcal{F}\}$ is bounded in \mathbb{C}. Show that \mathcal{F} is bounded in $\mathcal{C}[0,1]$.
3. Suppose f is a real continuous function on \mathbb{R}. Define $f_{n}(x)=f(n x)$ for $n=1,2, \cdots$. If the family $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$, show that f is constant.
4. Show that a monotone function on \mathbb{R} is continuous except possibly at a countable number of points.
5. Suppose $\left\{f_{n}\right\}$ is a sequence of monotonically increasing functions on \mathbb{R} such that $\left|f_{n}(x)\right|<1$ for all x and all n. Show that there exists a function f and a subsequence $\left\{n_{k}\right\}$ of $\{n\}$ such that

$$
f(x)=\lim _{k \rightarrow \infty} f_{n_{k}}(x), \text { for every } x \in \mathbb{R}
$$

